Supplement to tutorial 6

Chan Ki Fung

November 3, 2021

1 What we have covered in the tutorial

In the tutorial, we have discussed

Lemma 1.1. (Hadamard) Let $U \subset \mathbb{R}^n$, $p = (p_1, p_2, \ldots, p_n) \in U$ and $f : U \to \mathbb{R}$ be a smooth function, then there exist smooth functions $g_1, g_2, \ldots, g_n : U \to \mathbb{R}$ (possibly replace U by a smaller neighbourhood of p) such that

$$f(x) = f(p) + \sum_{i} (x_i - p_i)g_i(x)$$
(1)

Proof. Replace U by a smaller open ball centered at p (This makes sure that for $x \in U$, the line $\{p + t(x - p) : t \in [0, 1]\}$ is contained in U). Then we have

$$f(x) = f(p) + \int_0^1 \frac{d}{dt} f(p + t(x - p)) dt$$
$$= f(p) + \sum_i (x_i - p_i) \int_0^1 \frac{\partial f}{\partial x_i} (p + t(x - p)) dt$$

so we can take $g_i(x) = \int_0^1 \frac{\partial f}{\partial x_i} (p + t(x - p)) dt$.

The g_i 's are not unique, but if we take the partial derivatives to both sides of equation (1), we know that $g_i(p) = \frac{\partial f}{\partial x_i}(p)$. If we apply the above lemma to g_i , we can then get smooth functions $h_{i1}, h_{i2}, \ldots h_{in}$ so that

$$g_i(x) = \frac{\partial f}{\partial x_i}(p) + \sum_j (x_j - p_j)h_{ij}(x).$$

Lemma 1.2. Let $U \subset \mathbb{R}^n$, $p = (p_1, p_2, \ldots, p_n) \in U$ and $f : U \to \mathbb{R}$ be a smooth function, then there exist smooth functions $h_{i,j}, 1 \leq i, j \leq n$ (possibly replace U by a smaller neighbourhood of p) such that $h_{ij} = h_{ji}$, and

$$f(x) = f(p) + \sum_{i} \frac{\partial f}{\partial x_{i}}(p)(x_{i} - p_{i}) + \sum_{i,j} (x_{i} - p_{j})(x_{j} - p_{j})h_{ij}(x)$$

Proof. All follows from the paragraph before the lemma except that we may not have $h_{ij} = h_{ji}$. But we can simply replaced h_{ij} by $\frac{1}{2}(h_{ij} + h_{ji})$.

In the tutorial, I tried (but not finished) to prove the following,

Lemma 1.3. Let $U \subset \mathbb{R}^n$, $\overrightarrow{0} \in U$ and $f: U \to \mathbb{R}$ be a smooth function. Suppose $f(\overrightarrow{0}) = 0$, $DF(\overrightarrow{0})$ and $\frac{\partial^2 f}{\partial x_i \partial x_j}(\overrightarrow{0}) = \delta_{ij}$, then there exists a neighbourhood V of $\overrightarrow{0}$, a smooth map $\Phi: V \to U$ such that $D\Phi(\overrightarrow{0})$ is invertible and

$$f(\Phi(x_1, x_2, \dots, x_n)) = x_1^2 + x_2^2 + \dots + x_n^2.$$

Proof. By lemma 1.2, we can find smooth h_{ij} such that $h_{ij} = h_{ji}$, and

$$f(x) = \sum_{i,j} x_i x_j h_{ij}.$$
 (2)

By taking the second derivatives to both sides of 1, we found

$$h_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(\overrightarrow{0}) = \delta_{ij}$$

We want to do a change of coordinate so that the right hand side becomes the desired form.

Step 1: We first make $h_{12} = h_{21} = 0$. Since $h_{22}(\overrightarrow{0}) = 1$, we can assume $h_{22} \neq 0$ by restricting to a smaller neighbourhood. Since (completing squares)

$$h_{11}x_{11}^2 + x_1x_2h_{12} + x_2x_1h_{21} + x_2^2h_{22} = h_{11}x_{11}^2 + 2h_{12}x_1x_2 + x_2^2h_{22}$$

= $(h_{11} + h_{22}^{-2}h_{12}^2)x_1^2 + h_{22}(x_2 + h_{22}^{-1}h_{12}x_1)^2$

Consider the function $\Phi_1: (x_1, x_2, x_3, \ldots, x_n) \mapsto (x_1, x_2 + h_{22}^{-1} h_{12} x_1, x_3 \ldots, x_n)$, then $D\Phi_1(\overrightarrow{0})$ is upper triangular with diagonal entries 1, so Φ_1 has a local inverse by Inverse Function theorem, and so

$$f(\Phi_1^{-1}(x)) = \sum_{i,j} x_i x_j \tilde{h}_{ij},$$

with $\tilde{h}_{ij} = \tilde{h}_{ji}$ and $\tilde{h}_{12} = \tilde{h}_{21} = 0$. To simply the notation, we can replace f by $f \circ \Phi_1^{-1}$, h_{ij} by \tilde{h}_{ij} and assume $h_{12} = h_{21} = 0$.

Step 2: Repeat the above arguments, we can make $h_{13} = h_{31} = 0$, and then $h_{14} = h_{41} = 0$ and so on. So we can assume $h_{1j} = h_{j1} = 0$ for j > 1.

Step 3: Repeat step 2, we can make $h_{2j} = hj2 = 0$ for j > 2, keep repeating it we can make $h_{ij} = h_{ji} = 0$ for $i \neq j$.

Step 4: Now we have,

$$f(x) = \sum_{i,j} x_i^2 h_{ii},$$

with $h_{ii}(\overrightarrow{0}) = 1$. We can take $\Psi : (x_1, x_2, \dots, x_n) \mapsto (x_1\sqrt{h_{11}}, x_2\sqrt{h_{22}}, \dots, x_n\sqrt{h_{nn}})$. Now we can compute and see that $D\Psi$ is the identity matrix, so Ψ has a local inverse Φ , and

$$f(\Phi(x)) = \sum_{i,j} x_i^2$$

Actually, using a similar argument, we can prove the following

Lemma 1.4. Let $U \subset \mathbb{R}^n$, $\overrightarrow{0} \in U$ and $f : U \to \mathbb{R}$ be a smooth function. Suppose $f(\overrightarrow{0}) = 0, DF(\overrightarrow{0})$ and

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\overrightarrow{0}) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \leq k \\ -1 & \text{if } i = j > k \end{cases}$$

then there exists a neighbourhood V of $\overrightarrow{0}$, a smooth map $\Phi: V \to U$ such that $D\Phi(\overrightarrow{0})$ is invertible and

$$f(\Phi(x_1, x_2, \dots, x_n)) = x_1^2 + x_2^2 + \dots + x_k^2 - x_{k+1}^2 - x_{k+2}^2 + \dots - x_n^2$$

Finally,

Theorem 1.5. (Morse Lemma) Let $U \subset \mathbb{R}^n$, $\overrightarrow{0} \in U$ and $f: U \to \mathbb{R}$ be a smooth function. Suppose $f(\overrightarrow{0}) = 0$, $DF(\overrightarrow{0})$. Let A be the matrix $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\Big|_p\right)_{i,j}$.

Suppose A has signature (k, n - k), then there exists a neighbourhood V of $\vec{0}$, a smooth map $\Phi: V \to U$ such that $D\Phi(\vec{0})$ is invertible and

$$f(\Phi(x_1, x_2, \dots, x_n)) = x_1^2 + x_2^2 + \dots + x_k^2 - x_{k+1}^2 - x_{k+2}^2 + \dots - x_n^2.$$

Proof. By Taylor's theorem, we know that

$$f(x) = \sum_{ij} a_{ij} x_i x_j + R(x),$$

where $a_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{0})$, and $R(x) = O(|x|^3)$. Now by linear algebra (symmetric bilinear form), we can do a linear change of variable $T : \mathbb{R}^n \to \mathbb{R}^n$ so that

$$f(T(x)) = x_1^2 + x_2^2 + \dots + x_k^2 - x_{k+1}^2 - x_{k+2}^2 + \dots - x_n^2 + R(T(x)).$$

Replacing f with $f \circ T$, we can then use lemma 1.4.